argin: 5px 0px; line-height: 1.75em; font-size: 14px; font-family: sans-serif; text-indent: 2em;">金屬材料包括純金屬、合金、金屬材料金屬間化合物和特種金屬材料等。 (注:金屬氧化物(如氧化鋁)不屬于金屬材料)
- ist-paddingleft-2" style="margin: 0px; width: 395px; padding: 0px; font-family: sans-serif; font-size: 16px; float: left;">
-
中文名
-
金屬材料
-
外文名
-
metal material
-
種 類
-
黑色金屬、有色金屬和特種金屬。
-
意 義
-
人類社會(huì)發(fā)展的重要物質(zhì)基礎(chǔ)
-
拼 音
-
jin shu cai liao
材料信息
中文名稱:金屬材料
無縫鋼管
英文名稱:metal material
意義
編輯
人類文明的發(fā)展和社會(huì)的進(jìn)步同金屬材料關(guān)系十分密切。繼石器時(shí)代之后出現(xiàn)的銅器時(shí)代、鐵器時(shí)代。均以金屬材料的應(yīng)用為其時(shí)代的顯著標(biāo)志。現(xiàn)代,種類繁多的金屬材料已成為人類社會(huì)發(fā)展的重要物質(zhì)基礎(chǔ)。
種類
金屬材料通常分為黑色金屬、有色金屬和特種金屬材料。
①黑色金屬又稱鋼鐵材料,包括雜質(zhì)總含量<0.2%及含碳量不超過0.0218%的工業(yè)純鐵,含碳0.0218%~2.11%的鋼,含碳大于 2.11%的鑄鐵
不銹鋼
。廣義的黑色金屬還包括鉻、錳及其合金。
②有色金屬是指除鐵、鉻、錳以外的所有金屬及其合金,通常分為輕金屬、重金屬、貴金屬、半金屬、稀有金屬和稀土金屬等,有色合金的強(qiáng)度和硬度一般比純金屬高,并且電阻大、電阻溫度系數(shù)小。
③特種金屬材料包括不同用途的結(jié)構(gòu)金屬材料和功能金屬材料。其中有通過快速冷凝工藝獲得的非晶態(tài)金屬材料,以及準(zhǔn)晶、微晶、納米晶金屬材料等;還有隱身、抗氫、超導(dǎo)、形狀記憶、耐磨、減振阻尼等特殊功能合金以及金屬基復(fù)合材料等。
特殊性質(zhì)
疲勞
許多機(jī)械零件和工程構(gòu)件,是承受交變載荷工作的。在交變載荷的作用下,雖然應(yīng)力水平低于材料的屈服極限,但經(jīng)過長時(shí)間的應(yīng)力反復(fù)循環(huán)作用以后,也會(huì)發(fā)生突然脆性斷裂,這種現(xiàn)
機(jī)械零件
象叫做金屬材料的疲勞。
金屬材料疲勞斷裂的特點(diǎn)是:
⑴載荷應(yīng)力是交變的;
⑵載荷的作用時(shí)間較長;
⑶斷裂是瞬時(shí)發(fā)生的;
⑷無論是塑性材料還是脆性材料,在疲勞斷裂區(qū)都是脆性的。
所以,疲勞斷裂是工程上最常見、最危險(xiǎn)的斷裂形式。
金屬材料的疲勞現(xiàn)象,按條件不同可分為下列幾種:
⑴高周疲勞:指在低應(yīng)力(工作應(yīng)力低于材料的屈服極限,甚至低于彈性極限)條件下,應(yīng)力循環(huán)周數(shù)在100000以上的疲勞。它是最常見的一種疲勞破壞。高周疲勞一般簡稱為疲勞。
⑵低周疲勞:指在高應(yīng)力(工作應(yīng)力接近材料的屈服極限)或高應(yīng)變條件下,應(yīng)力循環(huán)周數(shù)在10000~100000以下的疲勞。由于交變的塑性應(yīng)變?cè)谶@種疲勞破壞中起主要作用,因而,也稱為塑性疲勞或應(yīng)變疲勞。
⑶熱疲勞:指由于溫度變化所產(chǎn)生的熱應(yīng)力的反復(fù)作用,所造成的疲勞破壞。
⑷腐蝕疲勞:指機(jī)器部件在交變載荷和腐蝕介質(zhì)(如酸、堿、海水、活性氣體等)的共同作用下,所產(chǎn)生的疲勞破壞。
⑸接觸疲勞:這是指機(jī)器零件的接觸表面,在接觸應(yīng)力的反復(fù)作用下,出現(xiàn)麻點(diǎn)剝落或表面壓碎剝落,從而造成機(jī)件失效破壞。
塑性
塑性是指金屬材料在載荷外力的作用下,產(chǎn)生永久變形(塑性變形)而不被破
塑性變形
壞的能力。金屬材料在受到拉伸時(shí),長度和橫截面積都要發(fā)生變化,因此,金屬的塑性可以用長度的伸長(延伸率)和斷面的收縮(斷面收縮率)兩個(gè)指標(biāo)來衡量。
金屬材料的延伸率和斷面收縮率愈大,表示該材料的塑性愈好,即材料能承受較大的塑性變形而不破壞。一般把延伸率大于百分之五的金屬材料稱為塑性材料(如低碳鋼等),而把延伸率小于百分之五的金屬材料稱為脆性材料(如灰口鑄鐵等)。塑性好的材料,它能在較大的宏觀范圍內(nèi)產(chǎn)生塑性變形,并在塑性變形的同時(shí)使金屬材料因塑性變形而強(qiáng)化,從而提高材料的強(qiáng)度,保證了零件的安全使用。此外,塑性好的材料可以順利地進(jìn)行某些成型工藝加工,如沖壓、冷彎、冷拔、校直等。因此,選擇金屬材料作機(jī)械零件時(shí),必須滿足一定的塑性指標(biāo)。
耐久性
建筑金屬腐蝕的主要形態(tài)
①均勻腐蝕。金屬表面的腐蝕使斷面均勻變薄。因此,常用年平均的厚度減損值作為腐蝕性能的指標(biāo)(腐蝕率)。鋼材在大氣中一般呈均勻腐蝕。
②孔蝕。金屬腐蝕呈點(diǎn)狀并形成深坑。孔蝕的產(chǎn)生與金屬的本性及其所處介質(zhì)有關(guān)。在含有氯鹽的介質(zhì)中易發(fā)生孔蝕。孔蝕常用最大孔深作為評(píng)定指標(biāo)。管道的腐蝕多考慮孔蝕問題。
③電偶腐蝕。不同金屬的接觸處,因所具不同電位而產(chǎn)生的腐蝕。
④縫隙腐蝕。金屬表面在縫隙或其他隱蔽區(qū)域部常發(fā)生由于不同部位間介質(zhì)的組分和濃度的差異所引起的局部腐蝕。
⑤應(yīng)力腐蝕。在腐蝕介質(zhì)和較高拉應(yīng)力共同作用下,金屬表面產(chǎn)生腐蝕并向內(nèi)擴(kuò)展成微裂紋,常導(dǎo)致突然破斷?;炷林械母邚?qiáng)度鋼筋(鋼絲)可能發(fā)生這種破壞。
硬度
硬度表示材料抵抗硬物體壓入其表面的能力。它是金屬材料的重要性能指標(biāo)之一。一般硬度越高,耐磨性越好。常用的硬度指標(biāo)有布氏硬度、洛氏硬度和維氏硬度。
1.布氏硬度(HB)以一定的載荷(一般3000kg)把一定大小(直徑一般為10mm)的淬硬鋼球壓入材料表面,保持一段時(shí)間,去載后,負(fù)荷與其壓痕面積之比值,即為布氏硬度值(HB),單位為公斤力/mm2 (N/mm2)。
2.洛氏硬度(HR)當(dāng)HB>450或者試樣過小時(shí),不能采用布氏硬度試驗(yàn)而改用洛氏硬度計(jì)量。它是用一個(gè)頂角120°的金剛石圓錐體或直徑為1.59、3.18mm的鋼球,在一定載荷下壓入被測(cè)材料表面,由壓痕的深度求出材料的硬度。根據(jù)試驗(yàn)材料硬度的不同,可采用不同的壓頭和總試驗(yàn)壓力組成幾種不同的洛氏硬度標(biāo)尺,每一種標(biāo)尺用一個(gè)字母在洛氏硬度符號(hào)HR后面加以注明。常用的洛氏硬度標(biāo)尺是A、B、C三種(HRA、HRB、HRC)。其中C標(biāo)尺應(yīng)用最為廣泛。
HRA:是采用60kg載荷鉆石錐壓入器求得的硬度,用于硬度極高的材料(如硬質(zhì)合金等)。
HRB:是采用100kg載荷和直徑1.58mm淬硬的鋼球,求得的硬度,用于硬度較低的材料(如退火鋼、鑄鐵等)。
HRC:是采用150kg載荷和鉆石錐壓入器求得的硬度,用于硬度很高的材料(如淬火鋼等)。
3.維氏硬度(HV)以120kg以內(nèi)的載荷和頂角為136°的金剛石方形錐壓入器壓入材料表面,用材料壓痕凹坑的表面積除以載荷值,即為維氏硬度值(HV)。
硬度試驗(yàn)是機(jī)械性能試驗(yàn)中最簡單易行的一種試驗(yàn)方法。為了能用硬度試驗(yàn)代替某些機(jī)械性能試驗(yàn),生產(chǎn)上需要一個(gè)比較準(zhǔn)確的硬度和強(qiáng)度的換算關(guān)系。實(shí)踐證明,金屬材料的各種硬度值之間,硬度值與強(qiáng)度值之間具有近似的相應(yīng)關(guān)系。因?yàn)橛捕戎凳怯善鹗妓苄宰冃慰沽屠^續(xù)塑性變形抗力決定的,材料的強(qiáng)度越高,塑性變形抗力越高,硬度值也就越高。
具體性能
金屬材料的性能決定著材料的適用范圍及應(yīng)用的合理性。金屬材料的性能主要分為四個(gè)方面,即:機(jī)械性能、化學(xué)性能、物理性能、工藝性能。
機(jī)械性能
一應(yīng)力的概念,物體內(nèi)部單位截面積上承受的力稱為應(yīng)力。由外力作用引起的應(yīng)力稱為工作應(yīng)力,在無外力作用條件下平衡于物體內(nèi)部的應(yīng)力稱為內(nèi)應(yīng)力(例如組織應(yīng)力、熱應(yīng)力、加工過程結(jié)束后留存下來的殘余應(yīng)力…等等)。
二機(jī)械性能,金屬在一定溫度條件下承受外力(載荷)作用時(shí),抵抗變形和斷裂的能力稱為金屬材料的機(jī)械性能(也稱為力學(xué)性能)。金屬材料承受的載荷有多種形式,它可以是靜態(tài)載荷,也可以是動(dòng)態(tài)載荷,包括單獨(dú)或同時(shí)承受的拉伸應(yīng)力、壓應(yīng)力、彎曲應(yīng)力、剪切應(yīng)力、扭轉(zhuǎn)應(yīng)力,以及摩擦、振動(dòng)、沖擊等等。
金屬材料的機(jī)械性能是零件的設(shè)計(jì)和選材時(shí)的主要依據(jù)。外加載荷性質(zhì)不同(例如拉伸、壓縮、扭轉(zhuǎn)、沖擊、循環(huán)載荷等),對(duì)金屬材料要求的機(jī)械性能也將不同。常用的機(jī)械性能包括:強(qiáng)度、塑性、硬度、沖擊韌性、多次沖擊抗力和疲勞極限等。
強(qiáng)度
強(qiáng)度是指金屬材料在靜荷作用下抵抗破壞(過量塑性變形或斷裂)的性能。由于載荷的作用方式有拉伸、壓縮、彎曲、剪切等形式,所以強(qiáng)度也分為抗拉強(qiáng)度、抗壓強(qiáng)度、抗彎強(qiáng)度、抗剪強(qiáng)度等。各種強(qiáng)度間常有一定的聯(lián)系,使用中一般較多以抗拉強(qiáng)度作為最基本的強(qiáng)度指針。
塑性
塑性是指金屬材料在載荷作用下,產(chǎn)生塑性變形(永久變形)而不破壞的能力。
硬度
硬度是衡量金屬材料軟硬程度的指針。目前生產(chǎn)中測(cè)定硬度方法最常用的是壓入硬度法,它是用一定幾何形狀的壓頭在一定載荷下壓入被測(cè)試的金屬材料表面,根據(jù)被壓入程度來測(cè)定其硬度值。
常用的方法有布氏硬度(HB)、洛氏硬度(HRA、HRB、HRC)和維氏硬度(HV)等方法。
疲勞
前面所討論的強(qiáng)度、塑性、硬度都是金屬在靜載荷作用下的機(jī)械性能指針。實(shí)際上,許多機(jī)器零件都是在循環(huán)載荷下工作的,在這種條件下零件會(huì)產(chǎn)生疲勞。
沖擊韌性
以很大速度作用于機(jī)件上的載荷稱為沖擊載荷,金屬在沖擊載荷作用下抵抗破壞的能力叫做沖擊韌性。
化學(xué)性能
金屬與其他物質(zhì)引起化學(xué)反應(yīng)的特性稱為金屬的化學(xué)性能。在實(shí)際應(yīng)用中主要考慮金屬的抗蝕性、抗氧化性(又稱作氧化抗力,這是特別指金屬在高溫時(shí)對(duì)氧化作用的抵抗能力或者說穩(wěn)定性),以及不同金屬之間、金屬與非金屬之間形成的化合物對(duì)機(jī)械性能的影響等等。在金屬的化學(xué)性能中,特別是抗蝕性對(duì)金屬的腐蝕疲勞損傷有著重大的意義。
物理性能
金屬的物理性能主要考慮:
⑴密度(比重):ρ=P/V單位克/立方厘米或噸/立方米,式中P為重量,V為體積。在實(shí)際應(yīng)用中,除了根據(jù)密度計(jì)算金屬零件的重量外,很重要的一點(diǎn)是考慮金屬的比強(qiáng)度(強(qiáng)度σb與密度ρ之比)來幫助選材,以及與無損檢測(cè)相關(guān)的聲學(xué)檢測(cè)中的聲阻抗(密度ρ與聲速C的乘積)和射線檢測(cè)中密度不同的物質(zhì)對(duì)射線能量有不同的吸收能力等等。
⑵熔點(diǎn):金屬由固態(tài)轉(zhuǎn)變成液態(tài)時(shí)的溫度,對(duì)金屬材料的熔煉、熱加工有直接影響,并與材料的高溫性能有很大關(guān)系。
⑶熱膨脹性隨著溫度變化,材料的體積也發(fā)生變化(膨脹或收縮)的現(xiàn)象稱為熱膨脹,多用線膨脹系數(shù)衡量,亦即溫度變化1℃時(shí),材料長度的增減量與其0℃時(shí)的長度之比。熱膨脹性與材料的比熱有關(guān)。在實(shí)際應(yīng)用中還要考慮比容(材料受溫度等外界影響時(shí),單位重量的材料其容積的增減,即容積與質(zhì)量之比),特別是對(duì)于在高溫環(huán)境下工作,或者在冷、熱交替環(huán)境中工作的金屬零件,必須考慮其膨脹性能的影響。
⑷磁性能吸引鐵磁性物體的性質(zhì)即為磁性,它反映在導(dǎo)磁率、磁滯損耗、剩余磁感應(yīng)強(qiáng)度、矯頑磁力等參數(shù)上,從而可以把金屬材料分成順磁與逆磁、軟磁與硬磁材料。
⑸電學(xué)性能主要考慮其電導(dǎo)率,在電磁無損檢測(cè)中對(duì)其電阻率和渦流損耗等都有影響。
工藝性能
金屬對(duì)各種加工工藝方法所表現(xiàn)出來的適應(yīng)性稱為工藝性能,主要有以下四個(gè)方面:
⑴切削加工性能:反映用切削工具(例如車削、銑削、刨削、磨削等)對(duì)金屬材料進(jìn)行切削加工的難易程度。
⑵可鍛性:反映金屬材料在壓力加工過程中成型的難易程度,例如將材料加熱到一定溫度時(shí)其塑性的高低(表現(xiàn)為塑性變形抗力的大?。?,允許熱壓力加工的溫度范圍大小,熱脹冷縮特性以及與顯微組織、機(jī)械性能有關(guān)的臨界變形的界限、熱變形時(shí)金屬的流動(dòng)性、導(dǎo)熱性能等。
⑶可鑄性:反映金屬材料熔化澆鑄成為鑄件的難易程度,表現(xiàn)為熔化狀態(tài)時(shí)的流動(dòng)性、吸氣性、氧化性、熔點(diǎn),鑄件顯微組織的均勻性、致密性,以及冷縮率等。
⑷可焊性:反映金屬材料在局部快速加熱,使結(jié)合部位迅速熔化或半熔化(需加壓),從而使結(jié)合部位牢固地結(jié)合在一起而成為整體的難易程度,表現(xiàn)為熔點(diǎn)、熔化時(shí)的吸氣性、氧化性、導(dǎo)熱性、熱脹冷縮特性、塑性以及與接縫部位和附近用材顯微組織的相關(guān)性、對(duì)機(jī)械性能的影響等。
分類方法
按化學(xué)成分分類
可分為碳素鋼、低合金鋼和合金鋼。
按主要質(zhì)量等級(jí)分類
① 普通碳素鋼、優(yōu)質(zhì)碳素鋼和特殊質(zhì)量碳素鋼;
② 普通低合金鋼、優(yōu)質(zhì)低合金鋼和特殊質(zhì)量低合金鋼;
③ 普通合金鋼、優(yōu)質(zhì)合金鋼和特殊質(zhì)量合金鋼。
表示方法
按照國家標(biāo)準(zhǔn)《鋼鐵產(chǎn)品牌號(hào)表示方法》規(guī)定,我國鋼鐵產(chǎn)品牌號(hào)采用漢語拼音字母、化學(xué)符號(hào)和阿拉伯?dāng)?shù)字相結(jié)合的表示方法,即:
l )牌號(hào)中化學(xué)元素采用國際化學(xué)元素表示。
2 )產(chǎn)品名稱、用途、特性和工藝方法等,通常采用代表該產(chǎn)品漢字的漢語拼音的縮寫字母表示。
3 )鋼鐵產(chǎn)品中的主要化學(xué)元素含量(%)采用阿拉伯?dāng)?shù)字表示。
合金結(jié)構(gòu)鋼的牌號(hào)按下列規(guī)則編制。數(shù)字表示含碳量的平均值。合金結(jié)構(gòu)鋼和彈簧鋼用二位數(shù)宇表示平均含碳量的萬分之幾,不銹耐酸鋼和耐熱鋼含碳量用千分?jǐn)?shù)表示。平均含碳量<0.1 %(用 “0” 表示;平均含碳量1.00 %時(shí),不標(biāo)合碳量,否則用千分?jǐn)?shù)表示。高速工具鋼和滾珠軸承鋼不標(biāo)含碳量,滾珠軸承鋼標(biāo)注用途符號(hào) “C” 。平均合金含量<1.5 %者,在牌號(hào)中只標(biāo)出元素符號(hào),不注其含量。
進(jìn)口金屬材料
中國規(guī)定的需要檢驗(yàn)的進(jìn)出口金屬材料類商品主要有生鐵、鋼錠、鋼坯、型材、線材、金屬制品、有色金屬及其制品等。進(jìn)出口鋼材的品質(zhì)、規(guī)格一般在合同中訂明,進(jìn)口鋼材中采用日本Xiff’標(biāo) 準(zhǔn)JlsG系列和德國工業(yè)標(biāo)準(zhǔn)DIN系列的較氨出口鋼材一般按中國標(biāo)準(zhǔn)檢驗(yàn);關(guān) 于進(jìn)口鍍鋅鐵皮、馬口鐵、硅鋼片的外觀缺陷的檢驗(yàn)按國家商檢局的有關(guān)規(guī)定執(zhí)行。國外的發(fā)票、裝箱清單、品質(zhì)證書、重理明細(xì)單、殘損證明、商務(wù) 記錄是有關(guān)重量、質(zhì)量、數(shù)量、殘損等檢驗(yàn)鑒定的重要依據(jù)。金屬材料類商品一般是由國家商檢局或由其他商檢機(jī)構(gòu)實(shí)施檢驗(yàn)。對(duì)于大批 量的進(jìn)口金屬材料,可在出廠前在國外制造廠進(jìn)行檢驗(yàn);對(duì)于進(jìn)口金屬材料 批量很大的專業(yè)單位,其本身檢驗(yàn)設(shè)備齊全,技術(shù)力量較強(qiáng)的,經(jīng)商檢機(jī)構(gòu) 審核同意后,允許對(duì)其所進(jìn)口的鋼材在向商檢機(jī)構(gòu)申報(bào)后進(jìn)行質(zhì)量的初驗(yàn); 出口金屬材料時(shí),必須進(jìn)行出廠檢驗(yàn),商檢機(jī)構(gòu)在生產(chǎn)過程中或出廠前還進(jìn) 行不定期的抽查檢驗(yàn),并以衡器抽驗(yàn)重量,核對(duì)批次、嘜頭、標(biāo)記等。金屬材料以數(shù)量計(jì)價(jià)的做數(shù)量檢驗(yàn),接重量計(jì)價(jià)的則做重量檢驗(yàn)。鋼材的尺 寸規(guī)格檢驗(yàn),包括鋼板的厚、寬、長;圓鋼的直徑:角鋼的邊長;槽鋼的高 度和槽寬;鋼管的直徑和壁厚等。鍍鋅鐵皮、馬口鐵的表面不得有傷痕、凹 坑、皺紋、露鐵等。金屬材料的機(jī)械及工藝性能檢驗(yàn),包括合金鋼熱處理后 的機(jī)械性能檢驗(yàn);鍋爐管和石油管的水壓試驗(yàn)、擴(kuò)口試驗(yàn)等。金屬材料的化 學(xué)咸分分析試驗(yàn),根據(jù)不同的用途,按標(biāo)準(zhǔn)規(guī)定以化學(xué)分析和儀器分析的方法,分析測(cè)定各種元素的含量,包括非金屬元素和有害元素。
快速成型技術(shù)
原理
快速成型屬于離散/堆積成型。它從成型原理上提出一個(gè)全新的思維模式維模型,即將計(jì)算機(jī)上制作的零件三維模型,進(jìn)行網(wǎng)格化處理并存儲(chǔ),對(duì)其進(jìn)行分層處理,得到各層截面的二維輪廓信息,按照這些輪廓信息自動(dòng)生成加工路徑,由成型頭在控制系統(tǒng)的控制下,選擇性地固化或切割一層層的成型材料,形成各個(gè)截面輪廓薄片,并逐步順序疊加成三維坯件.然后進(jìn)行坯件的后處理,形成零件。
工藝過程
快速成型的工藝過程具體如下:
l)產(chǎn)品三維模型的構(gòu)建。由于 RP 系統(tǒng)是由三維 CAD 模型直接驅(qū)動(dòng),因此首先要構(gòu)建所加工工件的三維CAD 模型。該三維CAD模型可以利用計(jì)算機(jī)輔助設(shè)計(jì)軟件(如Pro/E,I-DEAS,Solid Works,UG 等)直接構(gòu)建,也可以將已有產(chǎn)品的二維圖樣進(jìn)行轉(zhuǎn)換而形成三維模型,或?qū)Ξa(chǎn)品實(shí)體進(jìn)行激光掃描、 CT 斷層掃描,得到點(diǎn)云數(shù)據(jù),然后利用反求工程的方法來構(gòu)造三維模型。
2)三維模型的近似處理。由于產(chǎn)品往往有一些不規(guī)則的自由曲面,加工前要對(duì)模型進(jìn)行近似處理,以方便后續(xù)的數(shù)據(jù)處理工作。由于STL格式文件格式簡單、實(shí)用,目前已經(jīng)成為快速成型領(lǐng)域的準(zhǔn)標(biāo)準(zhǔn)接口文件。它是用一系列的小三角形平面來逼近原來的模型,每個(gè)小三角形用 3 個(gè)頂點(diǎn)坐標(biāo)和一個(gè)法向量來描述,三角形的大小可以根據(jù)精度要求進(jìn)行選擇。STL 文件有二進(jìn)制碼和 ASCll 碼兩種輸出形式,二進(jìn)制碼輸出形式所占的空間比 ASCⅡ 碼輸出形式的文件所占用的空間小得多,但ASCⅡ碼輸出形式可以閱讀和檢查。典型的CAD 軟件都帶有轉(zhuǎn)換和輸出 STL 格式文件的功能。
3)三維模型的切片處理。根據(jù)被加工模型的特征選擇合適的加工方向,在成型高度方向上用一系列一定間隔的平面切割近似后的模型,以便提取截面的輪廓信息。間隔一般取0.05mm~0.5mm, 常用 0.1mm。間隔越小,成型精度越高,但成型時(shí)間也越長,效率就越低,反之則精度低,但效率高。
4)成型加工。根據(jù)切片處理的截面輪廓,在計(jì)算機(jī)控制下,相應(yīng)的成型頭(激光頭或噴頭)按各截面輪廓信息做掃描運(yùn)動(dòng),在工作臺(tái)上一層一層地堆積材料,然后將各層相粘結(jié),最終得到原型產(chǎn)品。
5)成型零件的后處理。從成型系統(tǒng)里取出成型件,進(jìn)行打磨、拋光、涂掛,或放在高溫爐中進(jìn)行后燒結(jié),進(jìn)一步提高其強(qiáng)度。
技術(shù)特點(diǎn)
快速成型特術(shù)具有以下幾個(gè)重要特征:
l)可以制造任意復(fù)雜的三維幾何實(shí)體。由于采用離散/堆積成型的原理.它將一個(gè)十分復(fù)雜的三維制造過程簡化為二維過程的疊加,可實(shí)現(xiàn)對(duì)任意復(fù)雜形狀零件的加工。越是復(fù)雜的零件越能顯示出 RP 技術(shù)的優(yōu)越性此外, RP 技術(shù)特別適合于復(fù)雜型腔、復(fù)雜型面等傳統(tǒng)方法難以制造甚至無法制造的零件。
2)快速性。通過對(duì)一個(gè) CAD 模型的修改或重組就可獲得一個(gè)新零件的設(shè)計(jì)和加工信息。從幾個(gè)小時(shí)到幾十個(gè)小時(shí)就可制造出零件,具有快速制造的突出特點(diǎn)。
3)高度柔性。無需任何專用夾具或工具即可完成復(fù)雜的制造過程,快速制造工模具、原型或零件
4)快速成型技術(shù)實(shí)現(xiàn)了機(jī)械工程學(xué)科多年來追求的兩大先進(jìn)目標(biāo).即材料的提取(氣、液固相)過程與制造過程一體化和設(shè)計(jì)(CAD)與制造(CAM)一體化
5)與反求工程(Reverse Engineering)、CAD 技術(shù)、網(wǎng)絡(luò)技術(shù)、虛擬現(xiàn)實(shí)等相結(jié)合,成為產(chǎn)品決速開發(fā)的有力工具。
因此,快速成型技術(shù)在制造領(lǐng)域中起著越來越重要的作用,并將對(duì)制造業(yè)產(chǎn)生重要影響。
分類
快速成型技術(shù)的分類:
快速成型技術(shù)根據(jù)成型方法可分為兩類:基于激光及其他光源的成型技術(shù)(Laser Technology),例如:光固化成型(SLA)、分層實(shí)體制造(LOM)、選域激光粉末燒結(jié)(SLS)、形狀沉積成型(SDM)等;基于噴射的成型技術(shù)(Jetting Technoloy),例如:熔融沉積成型(FDM)、三維印刷(3DP)、多相噴射沉積(MJD)。下面對(duì)其中比較成熟的工藝作簡單的介紹。
1、SLA(Stereolithogrphy Apparatus)工藝 SLA 工藝也稱光造型或立體光刻,由Charles Hul 于 1984 年獲美國專利。1988 年美國 3D System公司推出商品化樣機(jī)SLA-I,這是世界上第一臺(tái)快速成型機(jī)。SLA 各型成型機(jī)機(jī)占據(jù)著 RP 設(shè)備市場(chǎng)的較大份額。SLA 技術(shù)是基于液態(tài)光敏樹脂的光聚合原理工作的。這種液態(tài)材料在一定波長和強(qiáng)度的紫外光照射下能迅速發(fā)生光聚合反應(yīng),分子量急劇增大,材料也就從液態(tài)轉(zhuǎn)變成固態(tài)。SLA工作原理:液槽中盛滿液態(tài)光固化樹脂激光束在偏轉(zhuǎn)鏡作用下,能在液態(tài)表而上掃描,掃描的軌跡及光線的有無均由計(jì)算機(jī)控制,光點(diǎn)打到的地方,液體就固化。成型開始時(shí),工作平臺(tái)在液面下一個(gè)確定的深度.聚焦后的光斑在液面上按計(jì)算機(jī)的指令逐點(diǎn)掃描,即逐點(diǎn)固化。當(dāng)一層掃描完成后.未被照射的地方仍是液態(tài)樹脂。然后升降臺(tái)帶動(dòng)平臺(tái)下降一層高度,已成型的層面上又布滿一層樹脂,刮板將粘度較大的樹脂液面刮平,然后再進(jìn)行下一層的掃描,新周化的一層牢周地粘在前一層上,如此重復(fù)直到整個(gè)零件制造完畢,得到一個(gè)三維實(shí)體模型。SLA 方法是目前快速成型技術(shù)領(lǐng)域中研究得最多的方法.也是技術(shù)上最為成熟的方法。SLA 工藝成型的零件精度較高,加工精度一般可達(dá)到 0.1 mm ,原材料利用率近 100 %。但這種方法也有白身的局限性,比如需要支撐、樹脂收縮導(dǎo)致精度下降、光固化樹脂有一定的毒性等。
2、LOM(Laminated Object Manufacturing,LOM)工藝LOM工藝稱疊層實(shí)體制造或分層實(shí)體制造,由美國Helisys公司的Michael Feygin于 1986 年研制成功。LOM工藝采用薄片材料,如紙、塑料薄膜等。片材表面事先涂覆上一層熱熔膠。加工時(shí),熱壓輥熱壓片材,使之與下面已成型的工件粘接。用CO2激光器在剛粘接的新層上切割出零件截面輪廓和工件外框,并在截面輪廓與外框之間多余的區(qū)域內(nèi)切割出上下對(duì)齊的網(wǎng)格。激光切割完成后,工作臺(tái)帶動(dòng)已成型的工件下降,與帶狀片材分離。供料機(jī)構(gòu)轉(zhuǎn)動(dòng)收料軸和供料軸,帶動(dòng)料帶移動(dòng),使新層移到加工區(qū)域。工作合上升到加工平面,熱壓輥熱壓,工件的層數(shù)增加一層,高度增加一個(gè)料厚。再在新層上切割截面輪廓。如此反復(fù)直至零件的所有截面粘接、切割完。最后,去除切碎的多余部分,得到分層制造的實(shí)體零件。LOM 工藝只需在片材上切割出零件截面的輪廓,而不用掃描整個(gè)截面。因此成型厚壁零件的速度較快,易于制造大型零件。工藝過程中不存在材料相變,因此不易引起翹曲變形。工件外框與截面輪廓之間的多余材料在加工中起到了支撐作用,所以 LOM 工藝無需加支撐。缺點(diǎn)是材料浪費(fèi)嚴(yán)重,表面質(zhì)量差。
3、SLS(Selective Laser Sintering)工藝 SLS工藝稱為選域激光燒結(jié),由美國德克薩斯大學(xué)奧斯汀分校的C.R.Dechard于 1989 年研制成功。SLS工藝是利用粉末狀材料成型的。將材料粉末鋪灑在已成型零件的上表面,并刮平,用高強(qiáng)度的CO2激光器在剛鋪的新層上掃描出零件截面,材料粉末在高強(qiáng)度的激光照射下被燒結(jié)在一起,得到零件的截面,并與下面已成型的部分連接。當(dāng)一層截面燒結(jié)完后,鋪上新的一層材料粉末,有選擇地?zé)Y(jié)下層截面。燒結(jié)完成后去掉多余的粉末,再進(jìn)行打磨、烘干等處理得到零件。SLS工藝的特點(diǎn)是材料適應(yīng)面廣,不僅能制造塑料零件,還能制造陶瓷、蠟等材料的零件,特別是可以制造金屬零件。這使SLS工藝頗具吸引力。SLS工藝無需加支撐,因?yàn)闆]有燒結(jié)的粉末起到了支撐的作用。
4、3DP (Three Dimension Printing)工藝三維印刷工藝是美國麻省理工學(xué)院E-manual Sachs等人研制的。已被美國的Soligen公司以DSPC(Direct Shell Production Casting)名義商品化,用以制造鑄造用的陶瓷殼體和型芯。3DP 工藝與SLS工藝類似,采用粉末材料成型,如陶瓷粉末、金屬粉末。所不同的是材料粉末不是通過燒結(jié)連結(jié)起來的,而是通過噴頭用粘結(jié)劑(如硅膠)將零件的截面“印刷”在材料粉來上面。用粘結(jié)劑粘接的零件強(qiáng)度較低,還須后處理。先燒掉粘結(jié)劑,然后在高溫下滲人金屬,使零件致密化,提高強(qiáng)度。
5 . FDM (Fused Depostion Modeling)工藝 熔融沉積制造(FDM)工藝由美國學(xué)者Scott Crump于 1988 年研制成功。FDM 的材料一般是熱塑性材料,如蠟、 ABS 、尼龍等。以絲狀供料。材料在噴頭內(nèi)被加熱熔化。噴頭沿零件截面輪廓和填充軌跡運(yùn)動(dòng),同時(shí)將熔化的材料擠出,材料迅速凝固,并與周圍的材料凝結(jié)。FDM技術(shù)是由Stratasys公司所設(shè)計(jì)與制造,可應(yīng)用于一系列的系統(tǒng)中。這些系統(tǒng)為FDM Maxum,F(xiàn)DM Titan,Prodigy Plus以及Dimension。FDM技術(shù)利用ABS,polycarbonate(PC),polyphenylsulfone (PPSF)以及其它材料。這些熱塑性材料受到擠壓成為半熔融狀態(tài)的細(xì)絲,由沉積在層層堆?;A(chǔ)上的方式,從3D CAD資料直接建構(gòu)原型。該技術(shù)通常應(yīng)用于塑型,裝配,功能性測(cè)試以及概念設(shè)計(jì)。此外,F(xiàn)DM技術(shù)可以應(yīng)用于打樣與快速制造。
其它材料: FDM技術(shù)還有其它的專用材料。這些包含polyphenylsulfone、橡膠材質(zhì)以及蠟材。橡膠材質(zhì)是用來作類似橡膠特性的功能性原型。蠟材是特別設(shè)計(jì)來建立脫蠟鑄造的樣品。蠟材的屬性讓FDM的樣品可以用來生產(chǎn)類似鑄造廠中的傳統(tǒng)蠟?zāi)!olyphenylsulfone,一種應(yīng)用于Titan機(jī)型的新工程材料,提供高耐熱性與抗化學(xué)性以及強(qiáng)度與硬度,其耐熱度為攝氏207.2度。
Stratasys宣布已經(jīng)針對(duì)FDM快速原型系統(tǒng)Titan發(fā)表PPSF材料。在各種快速原型材料之中,PPSF (或是稱為 polyphenylsulfone)有著最高的強(qiáng)韌性、耐熱性、以及抗化學(xué)性。航天工業(yè)、汽車工業(yè)以及醫(yī)療產(chǎn)品業(yè)的生產(chǎn)制造商是第一批期待使用這種PPSF材料的用戶。航天業(yè)將會(huì)喜歡該材料的難燃屬性;汽車制造業(yè)也非常想應(yīng)用其抗化學(xué)性以及在400度以上還能持續(xù)運(yùn)作的能力;而醫(yī)療產(chǎn)品制造商將對(duì)PPSF材質(zhì)的原型可以進(jìn)行消毒的能力感到興趣。測(cè)試單位,Parker Hannifin安裝了一個(gè)PPSF作的模型到汽車引擎中。該零件是一個(gè)名為crankcase vapor coalescer的過濾器,裝在一組V8引擎并作40 小時(shí)的測(cè)試以決定過濾器媒介的效能。該零件收集的燃?xì)獍?60度的潤滑油,燃料,油煙,以及其它燃燒的化學(xué)反應(yīng)生成物。Parker Hannifin的Russ Jensen說,“該裝配件并沒有產(chǎn)生外漏,并且其展現(xiàn)出與第一次裝配時(shí)相同的強(qiáng)度與屬性。我們相當(dāng)滿意它的表現(xiàn)。” 測(cè)試單位,MSOE (Milwaukee School of Engineering)的操作經(jīng)理Sheku Kamara,同樣地很滿意該新材料。“當(dāng)在玻璃熔融的450度時(shí),在各種快速原型材料之中,PPSF材料還擁有著除了金屬之外最高的操作溫度以及堅(jiān)硬度,”他說。“在粘著劑測(cè)試期間,PPSF原型零件遭受于溫度從14度到392度的考驗(yàn)且依然保持完整。”
顏色包含最常用到的白色,ABS提供六種材料顏色。色彩的選項(xiàng)包含藍(lán)色,黃色,紅色,綠色與黑色。醫(yī)學(xué)等級(jí)的ABSi 提供針對(duì)于半透明的應(yīng)用,例如汽車車燈的透明紅色或是黃色。
屬性穩(wěn)定度不像SLA以及PolyJet的樹脂,F(xiàn)DM材料的材料屬性不會(huì)隨著時(shí)間與環(huán)境曝曬而改變。就像是注塑成型的副本,這些材料幾乎在任何環(huán)境下都會(huì)保持他們的強(qiáng)度,硬度以及色彩。
精準(zhǔn)性快速原型的尺寸精度取決于許多因素,而其結(jié)果可能會(huì)因?yàn)槊總€(gè)工件或是不同日期而有些微小變化。需要考慮的事情必須包含已知的條件,例如量測(cè)的時(shí)間范圍,工件的拚?約盎肪車鈉厴?。縜xum,Titan以及Prodigy Plus精準(zhǔn)度資料詳見附表一。精度測(cè)試工件如圖5、6所示,在每一臺(tái)機(jī)器中均用層厚0.18 mm所建構(gòu)以形成目前的精準(zhǔn)性資料。
MAXUM TITAN PRODIGY
理論尺寸 實(shí)際尺寸 百分比 理論尺寸 百分比 理論尺寸 百分比
A 76.2 76.2 0.00 76.2 0.00 76.1 0.17
B 25.4 25.5 0.30 25.5 0.40 25.6 0.60
C 152.4 152.4 0.00 152.3 0.08 152.4 0.00
D 2.54 2.51 1.00 2.54 0.00 2.54 0.00
E 76.2 76.15 0.07 76.07 0.17 76.12 0.10
F 101.6 101.57 0.02 101.42 0.18 101.50 0.10
G 25.4 25.48 0.30 25.50 0.40 25.55 0.60
H1 12.7 12.62 0.60 12.65 0.40 12.55 1.20
金屬材料
H2 12.7 12.62 0.60 12.67 0.20 12.55 1.20
I 12.7 12.67 0.20 12.7 0.00 12.62 0.60
J 6.35 6.43 1.20 6.55 3.05 6.48 2.00
K 12.7 12.67 0.20 12.78 0.60 12.78 0.60
Maxum、Titan以及Prodigy Plus的尺寸精度資料。所有的測(cè)試零件均用層厚0.18mm所建構(gòu)。(單位:mm)
工件建構(gòu)一般而言,F(xiàn)DM技術(shù)所提供的準(zhǔn)確性通常相等或是優(yōu)于SLA技術(shù)以及PolyJet技術(shù),且確定優(yōu)于SLS技術(shù)。然而,由于精準(zhǔn)性是取決于許多的因素,所以矛盾的結(jié)果便會(huì)發(fā)生在個(gè)別的原型上。FDM技術(shù)的精準(zhǔn)性受到較少的變量影響。用SLA,SLS以及PolyJet技術(shù),尺寸精準(zhǔn)性會(huì)受影響的因素有機(jī)器的校正,操作的技巧,工件的成型方向與位置,材料的年限以及收縮率。
Z軸這并非一定都會(huì)這樣,Z軸可能是被證明準(zhǔn)確性最小的。除了先前所討論的變化之外,原型的高度可能由于層厚整數(shù)誤差而改變。對(duì)所有的RP系統(tǒng)而言都是這樣的。任何特征的表面頂端或是底端無法對(duì)齊成為一層時(shí),在軟件中的切層算法會(huì)將尺寸整數(shù)化到最接近的層厚數(shù)。在最壞的情形下,一端的表面往下整數(shù)化而另一端向上,高度可能偏離一個(gè)層厚。對(duì)于典型的FDM參數(shù),這可能會(huì)產(chǎn)生的誤差至少為0.127mm。
穩(wěn)定性尺寸的穩(wěn)定性是FDM原型的關(guān)鍵優(yōu)勢(shì),如同SLS技術(shù),時(shí)間與環(huán)境的曝曬都不會(huì)改變工件的尺寸或其他的特征。一但原型從FDM系統(tǒng)分離,當(dāng)它達(dá)到室內(nèi)溫度后,尺寸是固定不變的。如果溫度度數(shù)變化,用SLA 或是PolyJet技術(shù)則不是這樣的情形。
后處理輸出許多RP件都需要手工完成工件的光滑性。例如,SLA需要從工件表面手動(dòng)移除支撐結(jié)構(gòu),且工件表面需要一些手工打磨。這表示工件的精準(zhǔn)性不再只是受到系統(tǒng)精度的作用。它現(xiàn)在是受到后處理技師的技術(shù)等級(jí)所控制。對(duì)于塑型,裝配以及功能性原型,多數(shù)的使用者發(fā)現(xiàn)FDM工件的表面精度是可以接受的。那么,當(dāng)結(jié)合了水溶性支撐以及易剝離支撐,表示FDM原型的精準(zhǔn)性不會(huì)受到手工的改變。當(dāng)然,如果需要翻硅膠模用或是噴漆用的表面精度,F(xiàn)DM工件將需要后處理,如同其它的技術(shù)一樣。既然這樣,工件后處理技師的技藝在可以做到的原型精度上扮演了一個(gè)關(guān)鍵的角色。
表面完工精度受到使用者與Stratasys公司雙方的公認(rèn),F(xiàn)DM技術(shù)最明顯的限制就是表面完工精度。由于是半熔融狀態(tài)塑料擠制成型,表面完工精度比SLA與PolyJet還要粗糙,而與SLS不相上下。當(dāng)由較小的線材寬度與較薄的層厚來改進(jìn)表面完工精度時(shí),仍然可以在頂端,底面,以及側(cè)墻看出經(jīng)過擠壓噴嘴的等高線輪廓與建構(gòu)層厚。表2所列的為Maxum與Titan的表面完工精度。為了改善表面完工精度,Maxum與Titan現(xiàn)在都提供0.127 mm層厚。使用者發(fā)現(xiàn)工件的成型方向,可以滿足考慮表面完工精度需求。這些要求較高完工精度的表面通常以垂直方向成型。較不重要的表面通常以水平方向成型,就像是底端或是頂端的表面。如同其它技術(shù),二次加工(后處理輸出)可以用來使之相同。然而,ABS與polycarbonate材料的硬度讓打磨耗費(fèi)人力。使用者通常使用溶劑或用是粘結(jié)劑完成或是預(yù)備用打磨。商業(yè)上可用的這些介質(zhì)包含有熔接,ABS快干膠,Acetone 以及two-part epoxies。要符合足夠的精度,F(xiàn)DM技術(shù)與競(jìng)爭對(duì)手的產(chǎn)品都可以提供翻硅膠模用或是噴漆用的表面。這關(guān)鍵的差異是要花費(fèi)多少時(shí)間才能達(dá)到要求的結(jié)果。
特征定義:盡管高階的FDM系統(tǒng)可以生產(chǎn)較小的特征,大多數(shù)FDM原型的最小特征尺寸受限于兩倍線材寬度。沒有使用者的介入,F(xiàn)DM技術(shù)使用的”closed path”選項(xiàng)會(huì)限制最小特征尺寸為兩倍擠壓成型噴組的寬度。對(duì)于一般噴嘴與建造參數(shù)而言,最小特征尺寸范圍從0.4到 0.6 mm。盡管大于SLA與PolyJet的最小特征尺寸,但是該范圍是與這些技術(shù)的可用最小特征尺寸相同。盡管SLA技術(shù)可以建造小到0.08 (Viper si2機(jī)種)或0.25 mm (所有機(jī)種),以及PolyJet技術(shù)可以建造小到0.04mm,幾乎很少原型會(huì)用到這些極小值的優(yōu)勢(shì)來作最小的細(xì)節(jié)??紤]到材料屬性,通常發(fā)現(xiàn)SLA技術(shù)與PolyJet技術(shù)的原型常用最小特征尺寸為0.5mm。FDM技術(shù)的最小特征尺寸相等于或是優(yōu)于SLS技術(shù)的0.6到 0.8 mm。由于材料屬性相似于注塑成型的ABS或是polycarbonate,F(xiàn)DM技術(shù)可以給予功能性特征尺寸在0.4到 0.6 mm范圍中。
環(huán)境抵抗力:FDM原型提供的材料性質(zhì)相似于熱塑性材料。這包含了環(huán)境的與化學(xué)的曝曬。對(duì)ABS材料而言,使用者可以實(shí)驗(yàn)他們的原型在93度的溫度下以及包含石油,汽油以及甚至某些酸類等的化學(xué)媒介。一關(guān)鍵的考慮為水氣的曝曬,包括浸沒與濕氣。SLA技術(shù)與PolyJet技術(shù)使用的光敏樹脂對(duì)于潮濕水氣敏感且會(huì)受到傷害。暴曬在水中或是濕氣中不只會(huì)影響原型的機(jī)械屬性,也會(huì)影響尺寸精度。當(dāng)光敏樹脂的原型吸收了水氣之后,他們將會(huì)開始軟化并且變的有點(diǎn)易于彎曲。而且,工件會(huì)有翹曲或是膨脹的傾向,這會(huì)嚴(yán)重影響尺寸的精度。FDM技術(shù)的原型,以及SLS技術(shù)的原型,都不受濕氣影響,所以他們可以保持原有的機(jī)械屬性以及尺寸精度。
機(jī)械加工:FDM原型可以進(jìn)行銑床加工,鉆孔,研磨,車床加工等。為了補(bǔ)償表面精度不足并加強(qiáng)特征細(xì)節(jié),當(dāng)有特殊的品質(zhì)需求時(shí),使用者通常會(huì)進(jìn)行二次加工來提升原型的細(xì)節(jié)。在考慮原型的物理屬性之后,注意力應(yīng)該轉(zhuǎn)移至操作的參數(shù)上。下列領(lǐng)域可以影響到原型在預(yù)期應(yīng)用上的使用。
工件尺寸:不像某些快速原型技術(shù),廣告中FDM技術(shù)的建造范圍就是最大的工件尺寸。在家族系列產(chǎn)品中,F(xiàn)DM技術(shù)提供了廣泛的建造范圍。Maxum,最超大型,所提供的工件尺寸可達(dá)600 x 500 x 600 mm。這樣的建造范圍與最大型的SLA系統(tǒng)相同。Titan,則提供最大的工件尺寸為406 x 355 x 406 mm。這樣的建造范圍稍微大于SLS Sinterstations系統(tǒng)。Prodigy Plus,辦公室桌上型,擁有的建造范圍為203 x 203 x 305 mm,該尺寸稍微大于PolyJet系統(tǒng)以及最小型的SLA系統(tǒng)。當(dāng)使用具競(jìng)爭性的技術(shù)時(shí),快速原型超過建造范圍的部分通常分段建構(gòu)然后作粘結(jié)。使用商業(yè)上可用ABS快干膠,F(xiàn)DM工件的粘和強(qiáng)度可以滿足功能性測(cè)試的應(yīng)用。此外,F(xiàn)DM工件可以使用超音波熔接,這種選項(xiàng)無法使用在SLA以及PolyJet,因?yàn)樗麄儾皇鞘褂脽崴苄圆牧稀?/p>
支撐結(jié)構(gòu):在FDM技術(shù)中,需要支撐結(jié)構(gòu)來形成基底以制作工件并支撐任何超過懸掛的特征。在工件的接口,支撐材料的堅(jiān)固堆層已經(jīng)放下。在這堅(jiān)固堆層下,線材為0.5mm且在間隔為3.8mm下沉積。FDM技術(shù)提供兩種類型的支撐--易于剝離支撐結(jié)構(gòu)(BASS)以及水溶性支撐結(jié)構(gòu)(WaterWorks)。BASS支撐是由手工將支撐從工件表面剝離以移除。當(dāng)他們不想損壞工件表面,考慮的是必須要容易進(jìn)入與接近細(xì)小特征。水溶性支撐(WaterWorks)是使用水溶性材料,可分解于堿性水溶劑的解決方案。不像是易于剝離支撐(BASS),該支撐可以任意坐落于工件深處地嵌壁式的區(qū)域,或是接觸于細(xì)小特征,因?yàn)闄C(jī)械式的移除方式是可以不加考慮的。此外,水溶性支撐可以保護(hù)細(xì)小特征。在其它的快速原型技術(shù)中,他們要如何移除支撐而不造成特征損壞,是一項(xiàng)極大挑戰(zhàn)。
一體成型的裝配件隨著水溶性支撐的出現(xiàn),F(xiàn)DM技術(shù)提供了一項(xiàng)獨(dú)特的解決方案--建構(gòu)可運(yùn)轉(zhuǎn)的一體成型裝配件。因?yàn)樗苄灾慰梢赃M(jìn)行分解,一個(gè)多件的裝配件可以在一次機(jī)械運(yùn)轉(zhuǎn)中建構(gòu)完成。當(dāng)多件的裝配件可以在SLS或是PolyJet中實(shí)行時(shí),要小心地考慮到殘留在原件之間的材料。舉例來說,如圖3所示的FDM技術(shù)的腦型齒輪組,可以不用手工勞動(dòng)就能完成并用一些時(shí)間就能將水溶性支撐進(jìn)行分解。用SLS技術(shù)制作這樣相同的工件,可能需要一個(gè)小時(shí)以上的手工勞動(dòng)來清除齒輪與軸柄之件的粉末。有了水溶性支撐,整個(gè)裝配件的CAD資料可以當(dāng)作一個(gè)工件處理。同樣地,也不需要手工勞動(dòng)或是時(shí)間進(jìn)行工件的裝配。
快速成型設(shè)備最好能放置于電腦設(shè)計(jì)室內(nèi)以便于工作,要求設(shè)備無煙塵、無震動(dòng)和噪音并且材料安全無毒。而光敏樹脂(SLA)液態(tài)原材料有毒,需特別小心處理,并且需配置抽風(fēng)系統(tǒng),以抽除建模過程中產(chǎn)生之毒煙;而粉末材料(SLS)需配備抽風(fēng)系統(tǒng)、吸塵設(shè)備、防塵箱及氮?dú)獍l(fā)生系統(tǒng);紙張(LOM)也需要配置抽風(fēng)系統(tǒng)以抽除建模過程中產(chǎn)生之煙霧;只有美國Stratasys公司的FDM快速成型機(jī)只需要在一般辦公室環(huán)境下操作。許多FDM技術(shù)的使用者把該技術(shù)當(dāng)作設(shè)計(jì)的周邊。就本身而言,為了在制程早期就能審核與確認(rèn)設(shè)計(jì)概念,該技術(shù)已經(jīng)變得另一種與CAD系統(tǒng)連結(jié)并驅(qū)動(dòng)的工具。由于這樣的應(yīng)用,F(xiàn)DM技術(shù)都是作為概念模型工具以清楚地傳達(dá)日益精致與復(fù)雜的設(shè)計(jì)。當(dāng)FDM技術(shù)無法從概念模型中提供預(yù)期的速度,它提供了結(jié)合概念模型與視覺應(yīng)用的優(yōu)勢(shì)。這些強(qiáng)處包含精準(zhǔn)性,材料屬性,色彩以及免用手動(dòng)工件后處理。盡管材料強(qiáng)度與硬度并非概念模型的關(guān)鍵,但是它通常值得關(guān)注,因?yàn)榇嗳醯哪P屯ǔT谧畈贿m當(dāng)?shù)臅r(shí)機(jī)破裂。FDM技術(shù)的模型也應(yīng)用于銷售與行銷,包含內(nèi)部與外部。對(duì)內(nèi),F(xiàn)DM技術(shù)的原型是用來給銷售團(tuán)隊(duì),管理階層以及其它員工在開始制造之前看一眼產(chǎn)品長相。對(duì)外,原型是用來在產(chǎn)品作商品化之前引起預(yù)期客戶的興奮與興趣。
塑型,裝配以及功能性模型:對(duì)許多技術(shù)而言,快速原型的應(yīng)用在塑型,裝配以及功能性分析方面時(shí)需要作某些方面的犧牲。盡管SLA技術(shù)與PolyJet技術(shù)提供較好的細(xì)節(jié),精準(zhǔn)度與表面加工精度,但是他們無法提供必要的強(qiáng)度與硬度。同樣地,SLS技術(shù)提供強(qiáng)度而犧牲精準(zhǔn)性與細(xì)節(jié)。
修整樣品:快速原型可以用來作為建立模具的樣品。不像其它快速原型技術(shù),F(xiàn)DM技術(shù)可以成功地用來制作樣品。然而,必須考慮表面加工精度與工件后處理到可以作為母模所需時(shí)間。脫蠟鑄造是樣品的額外用途,樣品必須能在他們自己所建立陶砂殼模之中燃燒消耗掉。FDM技術(shù)制程所建構(gòu)的蠟?zāi)EcABS模都被證實(shí)適合應(yīng)用在陶砂殼模之中燃燒消耗的標(biāo)準(zhǔn)鑄造流程。
快速制造(少量多樣)快速原型激起對(duì)于短期制造的興趣,對(duì)于少到只有一個(gè)單位的訂單都很合算。這樣的應(yīng)用需要工件在許多領(lǐng)域都符合功能性規(guī)格。在FDM技術(shù)的精準(zhǔn)性與材料屬性都是可用之際,它是少數(shù)致力于該應(yīng)用的技術(shù)之一。當(dāng)尚未經(jīng)過最后加工修飾的FDM工件可能受限使用于可視化,裝飾的應(yīng)用,但不受妨礙它去作為內(nèi)部組件,或是那些不需要藝術(shù)吸引力的用途。對(duì)于快速制造的應(yīng)用,運(yùn)行時(shí)間將會(huì)成為一項(xiàng)重要的考慮。然而,就像幾位使用者的證明,為數(shù)不多的工件運(yùn)行時(shí)間是明顯地少于生產(chǎn)模具與成品所需要的總時(shí)間。
發(fā)展前景
金屬制品行業(yè)包括結(jié)構(gòu)性金屬制品制造、金屬工具制造、集裝箱及金屬包裝容器制造、
集裝箱
不銹鋼及類似日用金屬制品制造,船舶及海洋工程制造等。隨著社會(huì)的進(jìn)步和科技的發(fā)展,金屬制品在工業(yè)、農(nóng)業(yè)以及人們的生活各個(gè)領(lǐng)域的運(yùn)用越來越廣泛,也給社會(huì)創(chuàng)造越來越大的價(jià)值。
金屬制品行業(yè)在發(fā)展過程中也遇到一些困難,例如技術(shù)單一,技術(shù)水平偏低,缺乏先進(jìn)的設(shè)備,人才短缺等,制約了金屬制品行業(yè)的發(fā)展。為此,可以采取提高企業(yè)技術(shù)水平,引進(jìn)先進(jìn)技術(shù)設(shè)備,培養(yǎng)適用人才等提高中國金屬制品業(yè)的發(fā)展。
2009年金屬制品行業(yè)的產(chǎn)品將越來越趨向于多元化,業(yè)界的技術(shù)水平越來越高,產(chǎn)品質(zhì)量會(huì)穩(wěn)步提高,競(jìng)爭與市場(chǎng)將進(jìn)一步合理化。加上國家對(duì)行業(yè)的進(jìn)一步規(guī)范,以及相關(guān)行業(yè)優(yōu)惠政策的實(shí)施,2009-2012年,金屬制品行業(yè)將有巨大的發(fā)展空間。
內(nèi)容來自百科網(wǎng)